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The specific heat at constant pressure, Cp, of aluminum has been measured by 
Leadbetter between 300 and 772 K and by Brooks and Bingham between 330 and 
893 K. Both sets of data are converted to the specific heat at constant 0 K volume, 
Cvo, by the Slater-Overton method, based on the equation of state and not the 
Debye type of theory. Corrections to the work of Overton are given. Our analysis 
shows that the C~ 0 obtained from Leadbetter's data remains below 3R up to 750 K, 
whereas it becomes >3R for the Brooks and Bingham data in the temperature 
range 650-850 K. Calculations of Cvo (harmonic + anharmonic) from three 
pseudopotentials are reported for (a) Harrison modified point ion potential with 
Hubbard exchange and correlation factor in the dielectric function, ~(q); (b) 
Ashcroft pseudopotential with the same ~(q) as in (a); and (c) Dagens-Rasolt- 
Taylor (DRT) M2 pseudopotential with Geldart-Taylor ~(q). The shape of the Cv0 
curve is found to be similar for all three potentials. For DRT potential, Cv0 reaches 
3R at 700 K, whereas the other two barely approach 3R about 900 K. The 
anharmonic contribution to Cv0 is a factor of two larger for the Dagens et al. 
compared to the other two potentials. There is a marked difference between the Cv0 
curve from the analysis of the Brooks and Bingham data and the theoretical 
curves. It appears that the experimental points are too high from about 500 K up. 
The Cv0 curve from Leadbetter's data is very similar to the three theoretical curves, 
but the results appear to be too low. A remeasurement of the specific heat from 
500 K to the melting point is needed. 

KEY WORDS: Helmoltz free energy; anharmonic aluminum fcc Crystal; 
constant pressure and constant volume specific heat; interionic potentials for 
aluminum; equation of state; perturbation theory. 

1. I N T R O D U C T I O N  

T h e  speci f ic  h e a t  a t  c o n s t a n t  p r e s s u r e ,  Cp, of  a l u m i n u m  h a s  b e e n  m e a s u r e d  by  

L e a d b e t t e r  [1] for  t e m p e r a t u r e s  b e t w e e n  300  a n d  772  K a n d  by  B r o o k s  a n d  
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Bingham [2] between 330 and 893 K. Since anharmonic effects are expected 
to be important from the Debye temperature, Oo, to the melting point (420 
and 933 K, respectively, for aluminum), both Leadbetter [3] and Brooks and 
Bingham [2] have examined the anharmonic contributions to the specific 
heat at constant volume, CA, after conversion of Cp to Cv by the standard 
thermodynamic relation and subtraction of the harmonic Cv based on the 
Debye model. In Leadbetter's analysis [3], it is found that C A has a linear 
temperature dependence of the form 3NAkBT, where N is the Avogadro 
number, k8 is the Boltzmann constant, and A is the anharmonic coefficient. 
This form of CA [4-8] arises from the high temperature limit (T > 00) of the 
two lowest-order perturbation theory terms in the anharmonie Helmholtz free 
energy, F 3 and F4, which are themselves dependent on the cubic and quartic 
terms in the Taylor expansion of the crystal potential energy. Leadbetter's 
analysis led to a negative sign for the coefficient A, so that the value of Cv is 
less than the high temperature limit of the harmonic contributions to C~, viz. 
3R. In contrast, for CA, the analysis of Brooks and Bingham [2] gave a result 
opposite to that of Leadbetter. In the high temperature limit, C, was greater 
than 3R. 

In order to compare the experimental value of Cv at temperature T and 
volume V(T) with the results of theory, the experimental value Cv(T, V(T)) 
should be reduced to the value Cv(T, V(0)) corresponding to a volume V(0) -~ 
Vo that is fixed at the 0 K value. Leadbetter [3] alone made this reduction in 
his analysis. In light of the differences between the results of the examination 
of the two sets of data, it is worthwhile to make a fresh analysis of the data 
sets by a common method. 

In this paper, we present an analysis of the two sets of Cp data for 
aluminum and convert C~(T, V(T)) to C~o(T ) using a method introduced by 
Slater [9] and further developed by Overton [10]. Some corrections to the 
equations as published in ref. [10] are given. The experimental C~0(T) is then 
compared with the results of calculations of C~0 (harmonic and anharmonic) 
using a wide variety of two body potentials, V(r), such as the phenomenologi- 
cal Morse and Rydberg potentials and the more fundamental potentials based 
on the pseudopotential theory of metals. From the latter group, we have 
selected three potentials for the calculation of F3, F4, and CA for aluminum: 

a. Harrison modified point-ion potential [11] with Hubbard-Sham 
exchange and correlation correction factor in the dielectric function 
c(q). 

b. Ashcroft pseudopotential with Hubbard form for exchange and 
correlation correction factor in e(q). 

c. The model pseudopotential of Dagens et al. [ 12] with Geldart-Taylor 
exchange and correlation correction factor in E(q). 
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We have made the above choices for aluminum because potential (a) 
was used by Koehler et al. [13] in their anharmonic calculations of phonon 
widths and shifts; Monte Carlo results for Cv at 500, 600, and 700 K are 
available from the calculations of Mountain and Knauss [14] for potential 
(b); and potential (c) is a first principles type without adjustable parameters 
in either the pseudopotential or in the screening function. Finally, it should be 
noted that the phonon dispersion curves calculated from the first and second 
derivatives of these three potentials show good agreement with the experi- 
mental results [ 15] along the principal symmetry directions, thereby indicat- 
ing that there is little difference in the first two derivatives. Since the 
calculation of F 3 and F4 requires knowledge of frequencies, eigenvectors, and 
the first four derivatives, any differences in the results for CA should be due to 
differences in the third and fourth derivatives of these potentials. 

The plan of this paper is as follows. In Section 2 we present the reduction 
of Cv to Cv0 by Slater's method and the corrections required in the Overton 
formulas. The summary of the above mentioned potentials is given in Section 
3. The anharmonic calculations of F3, F4, and CA, employing the method of 
Shukla and Taylor [16] for the long range potentials, is presented in Section 
4. The discussion of the theoretical and experimental results of C~ and C A is 
presented in Section 5, and finally, the conclusions are stated in Section 6. 

2. REDUCTION OF THE SPECIFIC HEAT 

The experimental specific heat at constant pressure is converted to the 
specific heat at constant volume by the standard formula 

C = c ~ -  TV~B (1) 

where B is the isothermal bulk modulus, /3 is the coefficient of volume 
expansion, and T is the thermodynamic temperature. The specific heat at the 
constant volume V0 is related to the specific heat at the volume V occupied at 
temperature T by 

Cv(T, Vo) = Cv(T, V) - f V  (ocv/OV)TdV (2) 
vo 

The integrand in this equation can be replaced by the equivalent form 
T(O2p/OT2)v and the integral evaluated if p(V, T) is known. Slater [9] 
described a method for the evaluation, which has been extended by Overton 
[ 10]. It should be noted that the method does not depend on any assumptions 
regarding quasiharmonic frequency distribution or other features of the 
modified Debye model [3]. The accuracy of the final specific heat determina- 
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tion, Cvo(T), is limited only by the small approximations involved in the 
Slater-Overton treatment and the accuracy of the experimental data that 
constitute the equation of state. 

When the equation of state is written in Bridgman's form, 

V ( T , p )  = V(T ,  0)[1 - a , ( T ) p  + a 2 ( T ) p  2 + . �9 .] (3) 

the integral in Eq. (2) is replaced by 

r 

( aoVoT) - '  E ( T )  = - (132/k)[1 

+(y/k)[1 + 

- ( f l k ' / k 2 ) [ 2  

aofla~[2 + 
+ k3(l + 

2 p p 2ao azk  

(1 + ao)2k 4 

2a2 ao(1 + 6x) aoa2(ao + 6)] 
+ 5x k2 2(1 + ao) 3 - ~  + a o ~ J  

ao(1 + 2x) ao2a2_ ] 
x 2(1 +ao )  + 3k2(1 + ao) 2] 

ao(1 + 6x) 2as 
+ 6x (1 + a o )  + k2(1 +ao )  z] 

2/3ao] ao(k')2(1 + 4x) 
ao) 2 + (1 + ao)k 3 

aok"(1 + 2x) ao2a2" 
2kZ(1 + ao) + 3k3(1 + ao) 2 (4) 

where ao = ( V  - Vo)/Vo, /3 = ( l / V )  (OV/OT)p,  k = - ( l / V )  (OV/Op)T, 
X = a o a J k  z (1 + ao), the primes represent derivatives with respect to 
temperature at constant pressure, and E ( T )  is the integral in Eq. (2). In this 
form, the formula for E ( T )  is suitable for use when accurate data for V,/3, B', 
and the coefficients al and a2 of the equation of state are available. An 
alternative form of the formula can be written in terms of the coefficient of 
volume expansion, the isothermal bulk modulus, and their derivatives. This 
form is suitable for use when accurate measurements of elastic constants, 
from which the bulk modulus is derivable, are available. 

The alternative form is obtained from Eq. (4) by the substitutions 

az = ( W +  1)/2B 2 

a; = w ' / 2 8 2 -  8 ' ( w  + 1) /B 3 

a'2' = W " / 2 B  2 - 2 W ' B ' / B  3 + 3(B')2(W + 1)/B 4 - B " ( W  + 1)/B 3 

in which B = 1 /k ,  W = (OB/ap)r ,  and the primes denote differentiation with 
respect to temperature at constant pressure: 
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ao(1 - 10x/3) 3x ] 
(aoVoT) 'E(T)  = fl2B W +  2(1 + ao) 1 + a o  

[ ao(1 +4x/3)]  
+/3'B 1 + x 2(1 + ao) ] 

+fiB'[ 2 + 6 x - a ~  + 1 6 x / 3 ) 1  +ao 1 +4x 

ao(1 + 2x/3)  BW"ao 2 
+ B" + 

2(1 + ao) 6(1 + ao) 2 

+ BI3W' ao(1 + ao/3) W'B'ao 2 
(1 + ao) 2 + 3(1 + ao) 2 (5) 

where x is now expressed as ao(1 + W)/2(1 + ao). We have presented Eqs. 
(4) and (5) in full because of errors in the equivalent Eqs. (12) and (18) in 
Overton's paper [ 10]. 

For the range of temperature of interest for this work, values of the 
isothermal bulk modulus and its derivatives can be obtained from the 
adiabatic elastic constants determined by ultrasonic measurements. Conver- 
sion of the adiabatic bulk modulus and its derivatives, denoted by the 
subscript s, to the isothermal values is made by use of the standard formula, 

1/B = 1/B~ + TVfl2/Cp (6) 

and the result of Overton [ t 7], 

W -  Ws + Z(1 - 2B'/Bfl - 2Ws) + zZ(ws - 1 - fl'/fl 2) (7) 

z = : r v ~ 2 8 / c , ,  (8) 

in which some errors in the published formulas have been corrected. 
The specific heat at the 0 K volume is then given by C,,(T, V) - E(T).  

For the lattice specific heat, the electronic contribution corresponding to the 
fixed volume Vo at temperatures T must be subtracted. At sufficiently high 
temperatures, a further correction for the contribution of vacancy formation 
is required. 

In determining the value of Cvo by application of Eqs. (1)-(5),  the 
following data sources were used: 

/3(T < 300 K), Fraser and Hollis-Hallet [t8] and Gibbons [19], _+ 1% 
r > 300 K), Simmons and Balluffi [20], _+ 1% 
B,(T > 300 K), Gerlich and Fisher [21], _+ 1% 
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Ws(T > 300 K), Thomas [22] and Schmunk  and Smith [23], _+4% 
Cp(T > 300 K), Leadbet ter  [1], 0.2%, Brooks and Bingham [2], 0.6% 

These data  are similar to those used by Leadbet ter  [3] with two exceptions. 
For the modulus Bs, the measurements of Gerlich and Fisher [21] are used 
ra ther  than an extrapolation of the low temperature data [3]. For Ws, the 
da ta  of  Thomas [22] differs appreciably from that  of  Schmunk  and Smith 
[23] as used by Leadbetter  [3]. We have used the mean of  the two values in 
the analysis presented in Section 5. Our  error estimates for/3, Bs, and Ws are 
indicated alongside the sources, whereas for Cp, the estimates of  the original 
authors  are shown. 

In the reduction of C~ to Cvo for the two sets of data [1, 2], the values of 
V,/3,/3', Bs, and Ws remain unchanged.  First, we calculate the values of  V,/3, 
and /3 '  from the macroscopic expansivity data of  Simmons and Balluffi [20]. 
Next ,  a smooth set of values of V,/3, and/3 '  are obtained from a third degree 
polynomial fit of  Vversus T. These values of V,/3, and/3',  along with values of 
Bs, in the temperature range 300 _< T _< 850 K, are presented in Table I. 

3. P O T E N T I A L  F U N C T I O N S  FOR AI 

Several two body potentials, ~(r) ,  have been constructed for Al employ- 
ing different pseudopotentials (local and nonlocal) and electron gas screening 
functions, c(q). The effect of  different E(q)'s on ~(r) ,  for A1, has been 
examined by Duesbery and Taylor [24] and Rao [25]. Essentially, the 

Table I. Values of the Volume V (m 3 �9 kg-t), Coefficient of Expansion ~ (K-a), ~3' (K-2), and 
the Adiabatic Bulk Modulus Bs (Pa) Used in the Reduction of the Experimental Data ~ 

T V /3 /3' B~ 
(K) x 10 4 x lO s x lO s x 10 -l~ 

300 3.7069 6.73 5.65 7.571 
350 3.7196 7.02 5.89 7.491 
400 3.7330 7.32 6.12 7.399 
450 3.7470 7.63 6.35 7.299 
500 3.7616 7.95 6.57 7.201 
550 3.7769 8.29 6.78 7.093 
600 3.7929 8.63 6.99 6.991 
650 3.8096 8.99 7.18 6.880 
700 3.8271 9.35 7.37 6.769 
750 3.8454 9.72 7.55 6.659 
800 3.8645 10.10 7.73 6.545 
850 3.8845 10.50 7.89 6.418 

aThe quantity W, = (OBJOp)r = 4.50 is taken from ref. [22] and is independent of temperature. 
1Io = 3.6598 • 10 -4 (m 3 �9 kg-l). 
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potentials thus obtained are very similar in their behavior, except in the 
neighborhood of first and second neighbor positions. For example, in ref. [25], 
a deep minimum in ~(r) is obtained in the region of the nearest neighbor 
distance (rl) with the Hubbard ~(q) (which includes exchange effects). On 
the other hand, no minimum in if(r) is obtained with the Hartree e(q) (which 
excludes exchange effects) in the region of rl. When both the correlation and 
exchange effects are included in e(q), such as in the e(q)'s of Singwi et al. [26] 
(SSTL), and Geldart and Taylor [27] (GT), the calculation of Duesbery and 
Taylor [24] shows a deep minimum in ~(r) just beyond rl with the SSTL e(q) 
as compared to no minimum in q~(r) for the GT e(q). The essential difference 
in the GT and SSTL e(q) is that the former satisfies the compressibility sum 
rule, whereas the latter does not. For the more recent version of SSTL, that of 
Vashishta and Singwi [28], e(q) gives no minimum in ~(r) near rl [25]. The 
essential points of the above summary are reflected in the choice of the three 
potentials summarized below, all of which can be written in the following 
form: 

z2e 2 2z2e 2 f sin 
4e(r) = G(q) qr dq (9) 

r ~r Jo qr 

where e is the electronic charge and z is the valence. The first term in Eq. (9) 
represents the direct ion-ion coulomb interaction, and the second term 
represents the ion-electron interaction as screened by the other electrons. The 
function G(q) includes the exchange and correlation effects. In fact, there is a 
third contribution in O(r) due to the overlap of the ion core wave functions, 
repulsive in nature, but it has been found to be negligible in A1 [29] and we 
neglect it here. The expressions of G(q) for the different cases mentioned 
above in the introduction are as follows. 

First, we consider the Harrison modified point-ion potential with 
Hubbard-Sham c(q): 

C,(q) = [4rcze z Vb(q) 1 + (% ---- i-)(1 -- gq) (10) 

(1)[_ 
q---T- + (1 +~2p2)2] (11) 

gq = q2/[2(q2 + (kr2)] (12) 

where in Eqs. (I0)-(12), f/ is the atomic volume, Cq is the Hartree dielectric 
function, and (1 - gq) is the Hubbard~Sham exchange and correlation factor. 
The parameter ( is determined from the compressibility of the electron gas, 



306 Shukla and Plint 

and k F is the Fermi radius. The pseudopotential parameters/3 and p in the 
bare-ion pseudopotential Vb(q) and the parameter ~ in gq have been deter- 
mined by Koehler et al. [13] and Wallace [29], and their values are given by 

f l = 4 7 . 5 a  3(Ry), p=0.24a0 ,  ~=  1.90 

where a0 is the Bohr radius. 
Second, we consider the Ashcroft pseudopotential with Hubbard c (q) 

[14], 

a(q) = cos2 (qrc) ( 1 -  ~q) ) (13) 

Qo(q) ~(q) = 1 + (14) 
[1 - f(q)Qo(q)] 

Qo(q) = (krF2/q2)FOl) (15) 

F(r/) = ~ ~ ] (16) 

where, in Eqs. (15) and (16), ~/= q/kF, k~F = (m*/m) (4kF/Trao), and m* is 
the effective electron mass. The function f (q)  appearing in Eq. (14) is 
identical to gq defined by Eq. (12), but now ~ = 1.699. The core radius rc in 
Eq. (13) is given a value 1.12 a0, and (m*/m) = 1. 

Third, we consider the model pseudopotential of Dagens et al. with 
Geldart-Taylor E(q). Dagens et al. [12] have carried out a nonlinear self- 
consistent calculation of the charge density induced by an isolated AI 3§ ion 
placed in an electron gas of the appropriate metallic density, and they have 
calculated the A1 interionic potential. The GT screening function was used in 
their calculations of the phonon dispersion curves of AI. The details of the A1 
model potential and its parameters can be obtained from refs. [ 12, 30]. In this 
work, we have used their M2 model potential. 

4. CALCULATION OF F3 AND F4 

The formal expressions for/73 and F4, suitable for computation involving 
long range interactions, have been presented before in ref. [16]. Here we 
present a brief summary of the method and the necessary equations required 
in the calculation of F3 and F4 in the high temperature limit: 
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(KsT)  2 
F3 12N ) - - ~ - - ~ A ( q j  + q 2 + q 3 )  ]~(qlJl'qaJz'q3J3[2 

qtJ, q2J2 q3J3 w2(ql Jl)w2(q2J2)w2(q3j3) 

(KeT) 2 q'(ql Jl, q:j2, - q l  jl,  -q2j2  
F4 = + 8-----N Z. Z. ~-2(~lJl)~5(q2 JL) 

q l J t  q2J2 

2 
q'(q, J,, q2jz, q3J3) = ~ ~ '  '~. ~,,,e.r(] rt ])e,~(q, j , )ee(qzjz)G(q3j3) 

I aft"/ 

(17) 

(18) 

x [sin (ql �9 rt) + sin ( q 2  " rl) + sin ( q 3  " rl)] (19) 

t 

@(q, Jl, q2J2, -q ,  j , ,  --q2J2) = ~ 5  ~ ~ G(q, j ,)e,(q2j2) 
afl'y~ 

x e~,(-qij,)e~(-q2j2)~b,,,~,~(I d I)[1 - cos (q , .  r~)] [1 - cos (q2" rl)] (20) 

In Eqs. (17)-(20), M is the atomic mass, ~c(q j )  and e(qj)  are the eigenvalues 
and eigenvectors, respectively, for the wave vector q and branch index j;  r ~ = 
(a/2)[lx, Iv, lz], where a is the lattice constant and Ix, ly, l~ are integer 
components of vector !, whose sum is even for an fcc lattice; ~G~(] d]) and 
~ ( I  rt l) are the third and fourth rank tensor derivatives of ~b(I r ]), respec- 
tively; the prime over the 1 summation indicates the omission of the origin 
point, and the indices ~, 3, 7, 6 are each assigned the cartesian values x, y, z. 
The A function in Eq. (17) is unity if ql + q2 + q3 is zero or a vector of the 
reciprocal lattice, and zero otherwise. 

In the calculation of F3 from Eqs. (17) and (19), we note that, although 
27 terms are generated from the o~, 3, 3' summations in Eq. (19), the 
symmetry of the Gev(I r t l) tensor reduces them to 10. The complete expres- 
sion for Eq. (19) has been presented in Eq. (12) of ref. [16], and we will not 
reproduce it here. However, we note that for a given q when the I summation 
is carried out in Eq. (19), the algebraic expressions for only three distinct 
terms need to be evaluated in the following function: 

f l Fa,~(q) = )-~ ~ae~(] r ]) sin(q �9 r l) (21) 
1 

viz. Fxxx(q), Fxxy(q), and Fxyz(q). The other 7 terms in the set of 10 terms can 
be obtained from these by a suitable change of indices. When the interaction 
extends to many neighbors, such as with long range potentials, the computa- 
tional time can be reduced further by transforming the vector I sum in Eq. 
(21) to a shell summation involving the positive cartesian l / ,  l / ,  lz s compo- 
nents of the sth shell. An example of the Fxy~(q) expression can be obtained 
from Eq. (14) of ref. [16]. The other terms can be obtained in a similar 
manner. 
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Once the function F,~t~.~(q) is calculated, we calculate F3 from Eq. (17) by 
the scanning method [31]. In the calculation of F4, first we substitute Eq. (20) 
into (18) and isolate the following whole Brillouin zone (B.Z.)(q) and branch 
index ( j )  sums for a given !, viz. 

S,~a(l)=~_.e'~(qj)ee(qJ)[1- cos (q �9 r')] 
qj  J ( q J )  

(22) 

Next we write F4 in terms of S,e(l), i.e., 

(kBT) 2 
F4 4NM 2 r' I) s,~a(I) s.~(i) (23) 

afl'r~ 

The whole B.Z. sum in Eq. (22) is reduced to the irreducible 1/48th portion 
of the zone, and the j sum is carried out in terms of the Born's theorem by the 
method presented in Shukla and Wilk [32]. The symmetry of the tensors in 
the summand in Eq. (23) is such that the I sum can be simply changed to the 
shell(s) sum and the result multiplied with the multiplicity factor (n s) of that 
shell. We do not reproduce the full form of the tensors ,I,~(Irtl) and 
~a~(I  rt I), as they are given in ref. [7]. 

5. RESULTS AND DISCUSSION 

The results of the conversion of the adiabatic modulus B, and its pressure 
derivative W, to the corresponding isothermal quantities B and W obtained 
from each set of experimental specific heat data are shown in Table II. The 
differences between the two sets of isothermal quantities are small at 300 K, 
but rise to about 1% at 750 K. For the purpose of calculating E(T)  from Eq. 
(5), B is adequately represented by a linear dependence on T, while W is 
fitted by a second degree polynomial from which the derivatives W' and W" 
are determined. For the data values used, the first three terms of Eq. (5) have 
comparable magnitudes and are much larger than the last four. The tempera- 
ture dependence of these three terms is almost entirely due to the coefficients 
outside the brackets and, therefore, is determined by the variation of fl, fl', B, 
and B' with temperature. 

Both/3 and fl' increase as the temperature increases, while B decreases 
with essentially constant derivative B'. Thus it is possible that the sum of the 
three terms may change sign as the temperature is varied. Such an effect, 
mediated by the small contribution of the last four terms of Eq. (5), is shown 
in Table II, where E(T)  changes sign between 600 and 650 K. 

The specific heat at the 0 K volume 110 obtained from Cp by the 
application of Eqs. (1) and (5), contains a contribution from the conduction 
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Table II. Values of the Isothermal Bulk Modulus B (Pa) and Its Derivative W = (OB/Op)r 
Obtained from Table I, and the Specific Heat Data for C v Given by Brooks and Bingham [2]" 

Part A 
T B Cp C, E ( T )  

(K) x 10 -1~ W (expt) (expt) x 102 Cvo hCv 

300 7.263 4.736 5.790 5.554 0.83 5.477 --0.483 
350 7.122 4.767 5.983 5.688 1.19 5.596 -0.364 
400 6.967 4.798 6.161 5.801 1.53 5.694 -0.266 
450 6.801 4.830 6.311 5.880 1.80 5.759 -0.201 
500 6.633 4.862 6.449 5.940 1.91 5.806 -0.154 
550 6.454 4.894 6.591 5.997 1.69 5.854 -0.106 
600 6.280 4.925 6.748 6.062 1.09 5.913 --0.047 
650 6.098 4.957 6.918 6.131 -0.25 5.984 0.024 
700 5.918 4.990 7.107 6.213 -2.41 6.076 0.116 
750 5.740 5.023 7.309 6.301 -5.72 6.186 0.226 
800 5.562 5.058 7.536 6.404 -10.5 6.325 0.365 
850 5.381 5.093 7.812 6.549 -17.4 6.528 0.568 

Part B b 
T B C, Cv F~ (T) 

(K) • 10 -1~ W (expt) (expt) • 102 Cv0 hCv 

300 7.260 4.742 5.741 5.505 0.80 5.428 -0.532 
350 7.120 4.774 5.939 5.645 1.14 5.553 -0.407 
400 6.963 4.807 6.095 5.736 1.47 5.629 -0.331 
450 6.794 4.841 6.214 5.784 1.70 5.664 -0.296 
500 6.627 4.873 6.367 5.859 1.78 5.727 -0.233 
550 6.444 4.908 6.485 5.892 1.50 5.750 -0.210 
600 6.268 4.942 6.624 5.939 0.84 5.793 -0.167 
650 6.081 4.979 6.753 5.968 -0.60 5.825 -0.135 
700 5.893 5.019 6.879 5.989 -2.90 5.858 -0.102 
750 5.704 5.064 6.984 5.982 -6.44 5.874 -0.086 

aC v is the specific heat at volume V(T), E(T) is the correction Cv (V(T), T) - Cv (V(0), T), Cvo is Cv 
(V(0), T) less the electronic contribution, and AC~ is Cv o - 3R. All specific heats and 
E (T) are in units ofcal �9 mol -~ �9 K -1. 

bFor Part B, data for Cp are from Leadbetter [1]. 

e l ec t rons .  T h e  t a b u l a t e d  specif ic  h e a t  Cvo has  been  c o r r e c t e d  by  t h e  usua l  f ree  

e l e c t r o n  c o n t r i b u t i o n ,  Ce = 2.3 X 10 4T, in c a l .  mol  ~ �9 K - l ,  c o r r e s p o n d i n g  

to  f ixed v o l u m e  Vo. T h e  d i f f e r e n c e  b e t w e e n  Cv0 a n d  3R,  t he  h igh  t e m p e r a t u r e  

l i m i t  o f  t h e  h a r m o n i c  c o n t r i b u t i o n  to t he  l a t t i ce  specif ic  hea t ,  is t a b u l a t e d  as 

/xCv. 
The error in Cv0 has three components. The first arises from the 

experimental error in C v quoted in Section 2. The second component arises 
from the conversion of Cp to Cv via Eq. (1) and is estimated to be 3% of the 
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difference, Cp - Cv. The third component arises from E ( T ) ,  and is estimated 
to be <15% of the mean absolute value of E ( T )  on the basis of an 
examination of error propagation in Eq. (5) and by the fit of E ( T )  to a 
third-order polynomial in T. 

At temperatures above 700 K, vacancy formation is sufficient to affect 
the macroscopic properties of aluminum [20]. Accordingly, a contribution to 
the specific heat C f  "~ can be identified and is estimated by 

C f  ~ = (Nkn) exp (AS /kB) (E /kBT)  2 exp - ( E / k s T )  (24) 

where E and 2~S are the energy and entropy of formation of a single vacancy, 
respectively. Estimates of Cv Vac for AI, using E = 0.66 eV and (2xS/ks) = 2.0 
[33], show that it is only 2% of Cv0 at 850 K. 

In Fig. 1, we present Cv0 versus T, without correction for vacancies, for 
each data set. The error bars indicate the expected error from all sources. It  is 
clear that the results of Brooks and Bingham, which rise above 3R between 
600 and 650 K, are consistent with a positive anharmonic contribution to the 
specific heat. Correction for the effects of vacancies shifts the point at which 
Cvo > 3R to T -~ 650 K. In contrast, the results of Leadbetter remain below 3R 
up to 750 K, and even on extrapolation do not rise above 3R until 850 K. 
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Fig. 1. The specific heat at constant volume reduced to 0 K volume (Cvo) 
versus temperature (T): circles (O) for Leadbetter 's data, and triangles (A) for 
the Brooks and Bingham data. 
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Correction for the effects of vacancies keeps the extrapolated C~0 below 3R up 
to the melting point. 

In cases where Cv0 rises above 3R, the magnitude of the anharmonic 
contribution can be determined from the following equation: 

A C v o / 3 R  = (C~ o - Cv vac - 3 R ) / 3 R ,  (25) 

where Cv vac is given by Eq. (24), and the small difference between the high 
temperature harmonic contribution and 3R is neglected. We estimate ACvo 
from Eq. (25) for our analysis of the data of Brooks and Bingham, with E = 
0.66 eV and ( A S / k e )  = 2.0 in Eq. (24). The variation of A C v / 3 R  with 
temperature is shown in Fig. 2, as well as the variation of the corresponding 
quantity determined by Brooks and Bingham [2]. Although the estimated 
anharmonic contribution does not follow a strictly |inear variation with 
temperature, the curvature is slight. The mean slope is about 4 x 1 0  - 4  per K. 
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Fig. 2, The variation of AC,/3R with temperature for the 
Brooks and Bingham data: circles (e) for our analysis, and 
triangles (A) from ref. [2]: 
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The same general behavior and slope is seen in both curves. Since Brooks and 
Bingham did not convert their Cv to Cvo, some of the differences between these 
two curves can be attributed to this fact. 

Now we summarize the results of the theoretical calculation of Cvo 
(harmonic + anharmonic) from the three potentials presented in Section 3. 
The harmonic Cvo is calculated from the well-known formula 

hw(qj) 2 h~o(qj) 
C~o=k.  ,J~ ~ cosech 2 2-LT.  (26) 

The high temperature expansion (three terms) gives the same results as Eq. 
(26) in the temperature range 550-900 K. The anharmonic contribution to 
Cvo, CAvo, is calculated in the high temperature limit from the F3 and F4 terms 
presented in Section 4. It is given by 

02 
CA = - T ~  (F3 + F4) = 3R(BT) (27) 

The essential ingredients in the calculation of Cvh0 and CAvo from the three 
potentials are the first four radial derivatives of ~(r) evaluated at the various 
neighbor positions. In each case, these are evaluated numerically from the 
integral given by Eq. (9) and the corresponding G(q) functions presented in 
Section 3. 

The experimental values of w(q j) along the three principal symmetry 
and many off-symmetry directions are available from the neutron scattering 
work of Stedman and Nilsson [15]. Our calculated values of ~o(q j) from the 

Table III. The Anharmonic Coefficient B in' Cvo'4 in Eq. (27) in Units of 10 -6 K -~ for Different 

Potentials 

Number  of shells 

In In 
harmonic anharmonic 

Type of potential interaction interaction B 

Dagens et al. a 28 28 21.87 
Koehler et al. b 13 8 10.55 
Ashcroft c 6 6 11.71 
Morse 1 1 9.43 
Rydberg 1 1 10.59 

a M2 model pseudopotential with GT screening. 
b Harrison modified point ion pseudopotential with Hubbard screening. 
CAshcroft pseudopotential with Hubbard screening. 
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first two derivatives of ~5(r) for the three cases agree to within a few percent 
with the observed values. 

In Table III, we present the number of neighbors included in the 
harmonic and anharmonic interactions and the anharmonic coefficient B in 
Eq. (27) for the three potentials, along with the values of B for the Morse and 
Rydberg potentials from the recent work of R.C.S. [34]. For each potential, 
the coefficient is positive and an order of magnitude less than that determined 
by analysis of the experimental data of Brooks and Bingham. In all our 
calculations, Cvh0 was calculated, for each T, in the range 400-900 K from Eq. 
(26) employing 108,000 points in the whole Brillouin zone. F3 and F4 were 
calculated with 500 and 32,000 points in the whole zone, respectively. 

We present in Fig. 3 the results of total Cv0 for the three potentials, where 
the anharmonic contribution was added to C h for T > 500 K and forms less v 0 

than 1% of Cvo. In this figure, we also present the two sets of experimental Cvo 
values in which allowance has been made for vacancy formation for T >__ 700 
K. 
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Fig. 3. Calculated Cvo versus T for the three potentials and 
the two experimental curves. Curve 1, Brooks and Bingham; 
curve 2, Dagens et al. potential; curve 3, Ashcroft  potential; 
curve 4, Harr ison modified point ion potential; curve 5, Lead- 
better 's data. 
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It is clear from this figure that for all three potentials, the approach of 
Cvo to the value 3R is very slow. The Cvo obtained from the Dagens et al. 
potential reaches 3R at 700 K, whereas the other two theoretical Cv0's barely 
approach 3R about 900 K. The Cvo curve for the Koehler et al. and Ashcroft 
potentials almost overlap each other in the temperature range 400-900 K. It 
is to be noted that both potentials are obtained from the Hubbard exchange 
and correlation function in ~(q), whereas the Dagens et al. potential employs 
the GT screening function. Thus the main difference between the curves 
appears to arise from the use of different exchange and correlation factors. 

The difference between the Cv0 curve from the analysis made of the 
Brooks and Bingham data and the theoretical curves is marked. It appears 
that the experimental points are too high from about 500 K up. The Cvo curve 
from the analysis of Leadbetter's data is very similar to the form predicted for 
each of the three potentials, but the results appear to be too low. The Monte 
Carlo points of Cv0 calculated by Mountain and Knauss [14] lie above 3R for 
500 and 600 K and below for 700 K. 

6. CONCLUSIONS 

We conclude that the anharmonic contribution to the specific heat of 
aluminum predicted by theory for the potentials considered here is positive. 
The apparent agreement of sign of the specific heat contribution of Brooks 
and Bingham with this conclusion should not be taken as confirmation of the 
predictions because of possible errors in their results. The disagreement 
between the results of Leadbetter and Brooks and Bingham increases as the 
temperature increases, although the two sets of data were in reasonable 
agreement from 300 to 500 K. There appears to be a need for remeasurement 
of the specific heat of aluminum from 500 K to the melting point. 
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